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The present investigation is concerned with the wave propagation of generalized thermoelastic
diffusion on a half space with energy dissipation. The surface of the half-space is taken to be traction
free and a thermal shock applied on the surface. The problem has been solved numerically using
a finite element method. The expressions for displacement components, stresses, temperature,
concentration and chemical potential so obtained in the physical domain are computed numerically
and illustrated graphically at different times. Comparisons are made with the presence and absence
of diffusion.
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1. INTRODUCTION
The study of diffusion phenomenon is of great deal of
interest due to its many applications in geophysics and
industrial applications. Diffusion can be defined as the
movement of particles from an area of high concentra-
tion to an area of lower concentration until equilibriums
reached. Study of the phenomenon of diffusion is used to
improve the conditions of oil extractions (seeking ways of
more efficiently recovering oil from oil deposits). These
days, oil companies are interested in the process of ther-
moelastic diffusion for more efficient extraction of oil
from oil deposits. The governing equations for the dis-
placement and temperature fields as given by the lin-
ear dynamical theory of thermoelasticity, introduced by
Biot1 consist of the two coupled partial differential equa-
tions. The displacement field is governed by a wave-
type equation and the temperature field is governed by
a diffusion type equation. The properties of the later
are such that a portion of the solution extends to infin-
ity. The theory of couple thermoelasticity was extended
by Lord and Shulman (LS)2 and Green and Lindsay3

by including the thermal relaxation time in constitutive
relations. The theory was extended for anisotropic body
by Dhaliwal and Sherief.4 Green and Naghdi5 proposed
a new generalized thermoelasticity theory by including
the thermal-displacement gradient among the independent

∗Author to whom correspondence should be addressed.

constitutive variables. An important feature of this the-
ory, which is not present in other thermoelasticity theo-
ries, is that it does not accommodate dissipation of thermal
energy. The relevant fundamental aspects of this theory
are contained in Refs. [6, 7]. Nowacki8–11 developed the
theory of thermoelastic diffusion. In this theory, the cou-
pled thermoelastic model is used. Sherief et al.12 devel-
oped the generalized theory of thermoelastic diffusion with
one relaxation time, which allows the finite speeds of
propagation of waves. Sherief and Saleh13 investigated the
problem of a thermoelastic half-space in the context of
the theory of generalized thermoelastic diffusion with one
relaxation time. Singh14�15 discussed the reflection phe-
nomena of waves from free surface of an elastic solid with
generalized thermodiffusion. Sharma et al.16 discussed the
plane strain deformation in generalized thermoelastic dif-
fusion. Recently, Sherief, and El-Maghraby17 studied the
thermoelastic-diffusion interactions in a thick plate prob-
lem. The exact solution of the governing equations of the
generalized thermoelastic diffusion theory exists only for
very special and simple initial and boundary problems.
To calculate the solution of general problems, a numeri-
cal solution technique is used. For this reason the finite
element method is chosen. Abbas and Abbas et al.18–24

applied the finite element method in different thermoelas-
ticity problems. Recently,25–27 variants problems in waves
are studied. Other forms are described for example in the
Refs. [28–30].
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In the present contribution, the two-dimensional prob-
lem of generalized thermoelastic diffusion for a half-space
is studied. The problem has been solved using generalized
thermoelasticity theory proposed by Green and Naghdi
theory. The governing equations are solved by finite ele-
ment method. Numerical results for the displacement com-
ponents, stresses, temperature, concentration and chemical
potential are given and illustrated graphically.

2. BASIC EQUATIONS
According to Green and Nagdhi,5 Sherief et al.,12 the gov-
erning equations for isotropic, homogeneous solid with
generalized thermoelastic diffusion with energy dissipation
in the absence of body forces and heat sources are:
The equations of motion

�ui� ij + ��+��uj� ij −��i−�Ci = 	

2ui


t2
(1)

The equation of heat conduction

k∗�ii+k

�ii

t

= 	ce

2�


t2
+aT0


2C


t2
+T0�


2e


t2
(2)

The equation of mass diffusion

DbCii−Da�ii−D�eii =

C


t
(3)

The constitutive equations

�ij = 2�eij +�ij��ekk−��−�C�

P =−�ekk+bC−a�

eij =
1
2
�ui� j +uj� i�

(4)

where list of symbols are given in the nomenclature.

3. FORMULATION OF THE PROBLEM
We consider a homogeneous, isotropic, generalized ther-
modiffusive elastic half space initially at uniform tem-
perature T0. We use a fixed Cartesian coordinate system
�x� y� z� with origin on the surface x = 0, which is stress
free and with y-axis directed vertically into the medium.
The region x > 0 is occupied by the elastic solid with gen-
eralized thermodiffusion. We restrict our analysis parallel
to xy-plane. We assume that all quantities are functions of
the coordinates x, y and time t and independent of coor-
dinate z. So the components of displacement vector, tem-
perature and concentration can be taken in the following
form

u= ux = u�x� y� t�� v = uy = v�x� y� t�

w = uz = 0� T = T �x� y� t�� C = C�x� y� t�
(5)

From Eqs. (4) and (5), we can obtain the constitutive
equations

exx =

u


x
� eyy =


v


x
� exy =

1
2

(

u


y
+ 
v


x

)

ezz = 0� exz = 0� eyz = 0

(6)

�xx = 2�

u


x
+�e−��−�C (7)

�yy = 2�

v


y
+�e−��−�C (8)

�xy = �

(

u


y
+ 
v


x

)
(9)

P =−�e+bC−a� (10)

e = 
u


x
+ 
v


y
(11)

Equations (1)–(3) thus reduce to

��+2��

2u


x2
+ ��+��


2v


x
y
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2u


y2

= �
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x
+�
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x
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(12)
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(13)
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t

)(
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2


t2

(
	ce�+aT0C+T0�
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x
+T0�


v


y

)
(14)

Db

(

2C


x2
+ 
2C
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)
−Da

(

2�
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y2

)

−D�

(

3u


x3
+ 
3u


x
y2
+ 
3v


y3
+ 
3v
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x2

)
= 
C


t
(15)

Introducing the following non-dimensional variables

�x′� y′� u′� v′�= 

c1
�x� y� u� v�� t′ = t

�′ = ��

	c21
� C ′ = �C

	c21
�  = 	cec

2
1

k

�� ′
xx��

′
xy��

′
yy�=

1

	c21
��xx��xy��yy�

P ′ = P

�
� c21 =

�+2�
	

(16)

In terms of the non-dimensional quantities defined in
Eq. (16), the above governing equations reduce to (drop-
ping the dashed for convenience)

�xx =

u


x
+a1


v


y
−�−C (17)

�yy =

v


y
+a1


u


x
−�−C (18)

�xy = a2

(

v


x
+ 
u


y

)
(19)
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P =−
u


x
− 
v


y
+�1C−�2� (20)


2u


x2
+ �a1+a2�


2v


x
y
+a2


2u


y2
= 
�


x
+ 
C


x
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2u


t2
(21)


2v


y2
+ �a1+a2�
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 x
y
+a2


2v


x2
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y
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y
+ 
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(22)
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t2

(
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u


x
+�e
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)
(23)

�1

(

2C


x2
+ 
2C


y2

)
−�2

(

2�


x2
+ 
2�


y2

)

−
(

3u


x3
+ 
3v


x2
y
+ 
3u


y2
x
+ 
3v


y3

)
= �3


C


t
(24)

where,

a1 =
�

�+2�
� a2 =

�

�+2�
� �1 =

k∗

	cec
2
1

�2 =
k

	cec
2
1

� �c =
aT0�

	ce�
� �e =

T0�
2

	2cec
2
1

�1 =
b	c21
�2

� �2 =
a	c21
��

� �3 =
	c41
D�2

The above equations are solved subjected to the initial
conditions

u= v = � = C = 0� t = 0�

u̇= v̇ = �̇ = Ċ = 0� t = 0
(25)

The boundary conditions for the problem may be
taken as

��0� y� t�= �oH�t�H�2l−�y��� �xx�0� y� t�= 0

�xy�0� y� t�= 0� P�0� y� t�= 0
(26)

where, H is the Heaviside unit step.

4. FINITE ELEMENT FORMULATION
In this section, the governing equations of generalized
thermoelastic diffusion (the Green and Naghdi theory) are
summarized, followed by the corresponding finite element
equations. In the finite element method, the displacement
components u, v, temperature � and concentration C are
related to the corresponding nodal values by

u=
m∑
i=1

Niui�t�� v =
m∑
i=1

Nivi�t�

� =
m∑
i=1

Ni�i�t�� C =
m∑
i=1

NiCi�t�

(27)

where m denotes the number of nodes per element, and
Ni are the shape functions. The eight-node isoparamet-
ric, quadrilateral element is used for displacement com-
ponents, temperature and concentration calculations. The
weighting functions and the shape functions coincide.
Thus,

�u=
m∑
i=1

Ni�ui� �v =
m∑
i=1

Ni�vi

�� =
m∑
i=1

Ni��i� �C =
m∑
i=1

Ni�Ci

(28)

It should be noted that appropriate boundary condi-
tions associated with the governing Eqs. (21)–(24) must be
adopted in order to properly formulate a problem. Bound-
ary conditions are either essential (or geometric) or natural
(or traction) types. Essential conditions are prescribed dis-
placements u, v, temperature � and concentration C while,
the natural boundary conditions are prescribed tractions,
heat flux and mass flux which are expressed as

�xxnx+�xyny = �̄x� �xynx+�yyny = �̄y

qxnx +qyny = q̄� xnx +yny = ̄
(29)

where nx and ny are direction cosines of the outward unit
normal vector at the boundary, �̄x� �̄y are the given tractions
values, q̄ is the given surface heat flux and ̄ is the given
surface mass flux.
In the absence of body force, the governing equations

are multiplied by weighting functions and then are inte-
grated over the spatial domain � with the boundary � .
Applying integration by parts and making use of the diver-
gence theorem reduce the order of the spatial derivatives
and allows for the application of the boundary condi-
tions. Thus, the finite element equations corresponding to
Eqs. (21)–(24) can be obtained as

∫
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


�u


x
�xx +


�u


y
�xy


�v


x
�xy +


�v


y
�yy

(
�1


��


x


�


x
+�2


��


y


2�


t
y

)

(

�C


x


P


x
+ 
�C


y


P


y

)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d�

+
∫
�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u

2u


t2

�v

2v


t2

��

2


t2

(
�+�cC+�e


u


x
+�e


v


y

)

�3

C


t

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

d�
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Fig. 1. The temperature distribution � with distance x for different val-
ues of t at y = 0�5.

=
∫
�

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

�u�̄x

�v�̄y

��q̄

�C̄

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
d� (30)

Substituting the constitutive relations (17)–(20) and
Eqs. (28) and (29) into Eq. (30) leads

me∑
e=1

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

Me
11 0 0 0

0 Me
22 0 0

Me
31 Me

32 Me
33 Me

34

0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

üe

v̈e

�̈e

C̈e

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 0

0 0 0 0

0 0 Ce
33 0

0 0 0 Ce
44

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u̇e

v̇e

�̇e

Ċe

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Fig. 2. Horizontal displacement distribution u with distance x for dif-
ferent values of t at y = 0�5.

Fig. 3. Vertical displacement distribution v with distance x for different
values of t at y = 0�5.

+

⎡
⎢⎢⎢⎢⎢⎣

Ke
11 Ke

12 Ke
13 Ke

14

Ke
21 Ke

22 Ke
23 Ke

24

0 0 Ke
33 0

Ke
41 Ke

42 Ke
43 Ke

44

⎤
⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ue

ve

�e

Ce

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭
=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F e
1

F e
2

F e
3

F e
4

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

⎞
⎟⎟⎟⎟⎟⎠

(31)

where me is the total number of elements. The coefficients
in Eq. (31) are given below.

Me
11 =

∫
�
�N �T �N �d�� Me

22 =
∫
�
�N �T �N �d�

Me
31 =

∫
�
�N �T �N �d�� Me

32 =
∫
�
�c�N �T �N �d�

Me
33 =

∫
�
�e�N �T

[

N


x

]
d�� Me

34 =
∫
�
�e�N �T

[

N


y

]
d�

Ce
33 =−

∫
�
�2�N �T

([

2N


x2

]
+
[

2N


y2

])
d�

Ce
44 =

∫
�
�3�N �T �N �d�

Ke
11 =

∫
�

([

N


x

]T [

N


x

]
+a2

[

N


y

]T [

N


y

])
d�

Fig. 4. Concentration distribution C with distance x for different values
of t at y = 0�5.
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Fig. 5. Chemical potential distribution P with distance x for different
values of t at y = 0�5.

Ke
13 =

∫
�
−
[

N


x

]T

�N �d�

Ke
12 =

∫
�
�a1+a2�

[

N


x

]T [

N


y

]
d�

Ke
14 =

∫
�
−
[

N


x

]T

�N �d�

Ke
21 =

∫
�
�a1+a2�

[

N


y

]T [

N


x

]
d�

Ke
23 =

∫
�
−
[

N


y

]T

�N �d�

Ke
22 =

∫
�

([

N


y

]T [

N


y

]
+a2

[

N


x

]T [

N


x

])
d�

Ke
24 =

∫
�
−
[

N


y

]T

�N �d�

Ke
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∫
�
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x

]T [
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x

]
+�1

[
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y

]T [

N


y

])
d�

Fig. 6. The distribution of stress component �xx with distance x for
different values of t at y = 0�5.

Fig. 7. The distribution of stress component �xy with distance x for
different values of t at y = 0�5.

Ke
41 =−

∫
�
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N


x

]T [

2N


x2

]
+
[

N


y
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2N


x
y

])
d�

Ke
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∫
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x
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x
y

]
+
[
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y

]T [

2N


y2

])
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Ke
43 =−�2

∫
�
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x

]T [

N


x

]
+
[

N


y

]T [

N


y

])
d�

Ke
44 = �1

∫
�

([

N


x

]T [

N


x

]
+
[

N


y

]T [

N


y

])
d�

F e
1 =

∫
�
�N �T �̄x d�� F e

2 =
∫
�
�N �T �̄y d�

F e
3 =

∫
�
�N �T q̄ d�� F e

4 =
∫
�
�N �T ̄ d�

Symbolically, the discredited equations of Eq. (31) can
be written as

Md̈+Sḋ+Kd = F ext (32)

where M , S, K and F ext represent the mass, damping,
stiffness matrices and external force vectors, respectively;
d = �u v � C�t . On the other hand, the time derivatives of

Fig. 8. The distribution of stress component �yy with distance x for
different values of t at y = 0�5.
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Fig. 9. The temperature distribution � with distance x at t = 0�2 and
y = 0�5.

the unknown variables have to be determined by Newmark
time integration method (see Wriggers31).

5. NUMERICAL EXAMPLE
Following Sherief and Saleh13 copper material is chosen
for the purpose of numerical calculation.

	= 8954 kg m−3� �= 7�76×1010 kg m−1 s−2

�= 3�86×1010 kg m−1 s−2� �2 = 0�25

l= 0�5� ce = 383�1 J kg−1 k−1� �t = 1�78×10−5 k−1

�c = 1�98×10−4 m3 kg−1� K = 386 w m−1 k−1

To = 293 k� D = 0�85×10−8 kg s m−3

a= 1�2×104 m2 s−2 k−1� b = 0�9×106 m5 kg−1 s−2

The graphically results for temperature distribution �,
displacement components u, v, stress components �xx , �xy ,
�yy , concentration C and chemical potential P with dis-
tance x at y = 0�5 are shown in Figures 1–14. Figures 1–8
show that the effect of time �t = 0�05�0�1�0�15�0�2� in
the physical quantities under the thermoelastic diffusion

Fig. 10. Horizontal displacement distribution u with distance x at
t = 0�2 and y = 0�5.

Fig. 11. Vertical displacement distribution v with distance x at t = 0�2
and y = 0�5.

(TED). Figure 1 shows the variation of temperature � with
distance x and it indicates that temperature field has max-
imum value at the boundary and then decreases to zero.
Figure 2 shows the variation of horizontal displacement u
with respect to x at four different times and it indicates
that when the surface of the half-space is taken to be trac-
tion free, and the thermal shock applied on the surface,
the displacement at t = 0�2 shows a negative value at the
boundary of the half space and it attains a stationary max-
imum value after some distance. Finally it decreases to
zero value. The similar nature of variation is observed at
t = 0�05, t = 0�1, t = 0�15. Figure 3 exhibits the varia-
tion of vertical displacement for different values of time
in which we observed that, significant difference in the
value of displacement is noticed for the different value
of t. Figure 4 show the variation of concentration C with
distance x for four different values of t. It is clear that the
time has an increasing effect. Figures 5–8 shows the vari-
ations of chemical potential P and stress field with respect
to x for different values of t, in which we observed that,
the chemical potential P , stresses �xx and �xy are zero
at x = 0 which satisfies the boundary conditions of the

Fig. 12. The distribution of stress component �xx with distance x at
t = 0�2 and y = 0�5.

6 J. Comput. Theor. Nanosci. 12, 1–7, 2015
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Fig. 13. The distribution of stress component �xy with distance x at
t = 0�2 and y = 0�5.

Fig. 14. The distribution of stress component �yy with distance x at
t = 0�2 and y = 0�5.

problem. Figures 9–14 show the variation of the physical
quantities with space x at t = 0�2 under two types, ther-
moelastic with diffusion (TED) and thermoelastic without
diffusion (TE). It easily to see that, the diffusion has a
significant effect on the physical quantities.

NOMENCLATURE
	 Mass density
T Absolute temperature
C Mass concentration

�, � Lame’s constants
ui Components of displacement vector
�ij Stresses components
ce Specific heat at constant strain
� Temperature increment
T0 Reference temperature chosen so that

��T −T0�/T0� � 1
k∗ Material characteristic of the theory

k Thermal conductivity
P Chemical potential per unit mass
�ij Kronecker delta
d Thermodiffusion constant
a Measure of thermodiffusion effect
b Measure of diffusive effect
� = �3�+2���t

� = �3�+2���c

�t Coefficient of linear thermal expansion
�c Coefficient of linear diffusion expansion.
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